Investigation of Reducing In-Plane Resistance of Nickel Oxide-Samaria-Doped Ceria Anode in Thin-Film Solid Oxide Fuel Cells

Yusung Kim1, Sanghoon Lee1, Gu Young Cho, Wonjong Yu, Yeageun Lee, Ikwhang Chang#, Jong Dae Bae#, Suk Won Cha#

Abstract

Metal/NiO-Smarium-doped ceria (SDC) nano-composite thin film anodes were deposited on anodic aluminum oxide by co-sputtering to enhance the in-plane current-collecting ability and investigated by varying the composition of metal materials (Pt and Au). Full fuel cells with these nano-composites were fabricated and tested at 500 °C. Columnar anodes with a sponge structure were fabricated by varying the DC sputtering source power and they were thermally stable at the operating temperature. By adding metal material, the ohmic resistance, including the current collecting resistance, was drastically reduced and the polarization resistance also decreased. The nano-composite electrode with a Pt content of 61 at% showed the highest performance, which is a maximum power density of 212.5 mW/cm2 at 500 °C. In addition, Au was considered to reduce the current collecting resistance and the corresponding power density was 3 times higher than that with the NiO-SDC anode.